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A class of dynamical symmetries for the Euler-Lagrange equations correspond- 
ing to the Lagrangian L = (l/2)gab//~//h is determined. The members of the class 
are closely related to tensor fields defined on the configuration space. First 
integrals generated by the dynamical symmetries through deformation of a given 
first integral are then examined. Noether-type conserved quantities whose expres- 
sion depends only on the dynamical symmetry are also explicitly exhibited. 
Applications to general relativity are also pointed out in the course of the 
discussion. 

1. INTRODUCTION 

In the last few years there has been considerable progress in the 
development of procedures leading to the generation of conserved quantities 
for classical Lagrangian systems, with many new ideas being introduced. A 
particular emphasis has been given to the problem of relating constants of 
the motion to the various types of symmetry that may be considered (Sarlet 
et al., 1981). However, in spite of the interesting theoretical results already 
achieved, there seems to be a lack of practical procedures that provide a way 
of constructing symmetry generators and of determining specific conserved 
quantities (Leach, 1981). 

The aim of this paper is to give a contribution toward filling these gaps. 
In so doing, besides exploring new applications of the existing theory, we 
will also obtain additional insights into the efficiency of already established 
theoretical results, which in turn will suggest new lines of development for 
the theoretical analysis. 

The starting point of our approach is the problem of determining 
dynamical symmetries for the Euler-Lagrange equations generated by the 
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regular Lagrangian L = �89 b. The form of the Lagrangian is sufficiently 
general to encompass a certain number of relevant physical applications. 
For instance, the Lagrangian L is known to model the geodesic motion of 
freely falling particles in the general theory of relativity; in analytical 
mechanics it governs the free motion of a mechanical system with a finite 
number of degrees of freedom; moreover, it may be used to describe the 
motion of a conservative Newtonian system, modulo a suitable conformal 
transformation in the configuration space (Xanthopoulos, 1982). Even 
though in the course of this paper we shall mainly adopt the terminology of 
general relativity, it is to be noticed that the results do not depend on the 
signature of the metric, unless explicitly stated otherwise. 

The literature on the relations between symmetry properties of the 
geodesic equation and conserved quantities is very extended, in view of the 
fact that the determination of the geodesics of a given metric is a fundamen- 
tal problem in the field of general relativity (see, e.g., the list of references in 
Katzin et al., 1981; and in Caviglia et al., 1982a). In general, however, this 
problem has been dealt with using very special ad hoc methods, and no 
systematic treatment seems as yet to be available. It turns out that by the 
introduction of techniques coming from modern analytical mechanics we 
obtain an approach that unifies already existing results, and we also find 
new families of first integrals of motion. 

From the point of view of analytical mechanics, it is to be noticed that 
we will not determine the complete set of dynamical symmetries for the 
given set of Euler-Lagrange equations. More precisely, we shall look for 
those dynamical symmetries that are closely related to tensor fields defined 
on the configuration manifold, following suggestions coming from general 
relativity. Of course, this procedure may be extended to more general cases. 
We want also to point out that the dynamical symmetries of the above class 
turn out to be connected in a very natural way to the so-called "Noether- 
type" conserved quantities (Lutzky, 1979), which may be written down 
explicitly in terms of the given dynamical symmetry. More information on 
this point wiU be given in Section 7. 

2. PRELIMINARIES ON LAGRANGIAN SYSTEMS AND 
DYNAMICAL SYMMETRIES 

This section is devoted to a brief review of some basic results concern- 
ing Lagrangian systems. A more exhaustive treatment may be found in 
works by Crampin (1977) and by Sarlet and Cantrijn (1981). 

Let M be an n-dimensional manifold and let R • TM be the associated 
extended tangent bundle, referred to local natural coordinates (s, q a, qa) 
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(a = 1 .. . . .  n). A regular Lagrangian L is a function defined on R • TM such 
that the matrix 02L/(OqaOqb) is nonsingular in the domain of the given 
local coordinates. The Euler-Lagrange equations corresponding to a regular 
Lagrangian L, 

d OL OL 
ds 071 a Oq a =0 ,  a = l  .. . . .  n (I) 

may be written in the equivalent normal form 

d/ff _- Aa(s ' q,//), a = 1 .... ,n 
ds 

(2) 

where A Q is defined by 

Aa(s,q,q)=gab( 02L 02---~L + O--L) (3) 
- Oqboqc qC OetbOs Oqb 

and g~b is the inverse matrix of 02L/(OilaOqb). (In the following sections 
the entries gab will coincide with the contravariant components of the metric 
tensor, as suggested by the notation introduced.) 

The motions of the mechanical system described by the Lagrangian L 
are the projections onto M of the integral curves of the vector field F of 
local expression 

0 -a 0 Aa 0 r = T + q  a (4) 

In general, the knowledge of the symmetries of the system of differen- 
tial equations defined by equation (4) is of great help in the process of 
determining the integral curves of F. Actually, besides giving information 
about peculiar properties of the system of equations that is being analyzed, 
symmetries may be used either to find special solutions or to reduce the 
system to a simpler one (Hermann, 1968; Muncaster, 1982). 

A vector field Y on R • TM with local representation 

0 
Y= r162 0 + Ka(s,q, il) o- ~ + *lQ(s,q, il) 0r (5) 

is said to be a dynamical symmetry of F if and only if 

r l = g r  (6) 

for some suitable function g. 
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By substitution of equations (4) and (5) into (6) it may be shown that 
equation (6) is equivalent to the conditions 

,7o = r ( K . ) - o o r ( ~  - ) (7) 

1-'(r/a) - Aa/"('r) - Y(A a) = 0 (8) 

g = - F(~)  (9) 

The dynamical symmetry Y is said to be a point symmetry of F if and 
only if the components ~" and K" depend only on q and s (Lutzky, 1978, 
1982; Gonzalez Gascon, 1980). 

Finally, let us consider the 1-form 0 defined by 

O = L ds + - f f~  ( dq ~ - ?l a ds ) (10) 

A Noether symmetry is generated by a vector field Y of the form (5) 
satisfying the condition 

 ydO=O (11) 

It may be shown that every Noether symmetry is also a dynamical 
symmetry (Sarlet et al., 1981), but the converse is not true. In general, both 
Noether symmetries and point symmetries identify first integrals of motion 
(Lutzky, 1979b, 1979c, 1982; Sarlet et al., 1981; Crarhpin, 1977). On the 
contrary, the relations between dynamical symmetries and conserved quan- 
tities are much more involved (Lutzky, 1979a; Sarlet et al., 1981). In the 
following sections we shall introduce conserved quantities of geodesic 
motion concomitant with dynamical symmetries. 

3. A CLASS OF DYNAMICAL SYMMETRIES  FOR THE 
GEODESIC EQUATION 

It is well known that, in general relativity, the motion of freely failing 
particles is modeled by the Euler-Lagrange equations deduced from a 
regular Lagrangian L of the form L --- �89 b, where g~b is a Lorentzian 
metric. The equations of motion may be written as 

dq U 

ds Fhc~ilbilC= A~(q 'O)  (12) 

where the symbols Fbc a denote, as usual, the connection coefficients. Of 
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course, we obtain the geodesics of the metric gab by projecting onto M the 
integral curves of F, with A a given by equation (12). 

During the past few years there has been a considerable amount of 
progress in the study of those vector fields of M that, in some sense, may be 
regarded as symmetry generators for the geodesic equation (12), with many 
new ideas and ingenious methods for the determination of constants of 
motion being introduced. At this stage, however, it seems more convenient 
to formulate the problem in more abstract terms, taking profit of recent 
developments in the field of analytical mechanics. Accordingly, we de- 
termine a family of dynamical symmetries Y of the field (4), with A a given 
by equation (12). It will be shown that the family is sufficiently extended to 
contain and unify earlier results already obtained in the field of general 
relativity. Moreover, the members of the family may be used to construct 
new classes of previously unknown constants of geodesic motion. Finally, 
we shall also obtain additional insights into the connections between 
dynamical symmetries and first integrals of motion. 

Let K ~ be a vector field defined on M. Our aim is to find a dynamical 
symmetry Y such that its natural projection onto M coincides with K a. If 
such a Y exists, then equation (7) yields the expression of 7/~, namely, 

~a = 0 b( OKVO q b)_ ?1 aV(r) (13) 

By requiring that also equation (8) be satisfied, we may determine r while, 
at the same time, we find conditions on K ~ ensuring the existence of the 
dynamical symmetry. Consequently, let us substitute into equation (8) the 
expressions (13) and (12) of 7/~ and A ~, respectively. After long and rather 
involved calculations equation (8) can be rewritten in the equivalent form 

_ oarr( )+ { d 2 K  a a d r  c . e r i c  a 
I ds2 +2Fbc---~-s qh+--~q a ^ q  q ] = 0  (14) 

Recalling the expression of the Riemann t e n s o r  Rabcd in terms of the 
connection coefficients, equation (14) can be cast into the simpler form 
(Shirokov, 1973) 

ct Cq e VcvbK ~ + R~b,.dO bKC//d = / / a F r  ( r ) (15) 

where we recall that the quantities ~]b are  tangent to a geodesic of M, since 
equation (12) is supposed to hold. 

The left-hand side of equation (15) has exactly the form of the equation 
of geodesic deviation. Accordingly, in the case of vanishing FF(r) ,  the 
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restriction of K ~ to an arbitrary geodesic of M must be a Jacobi field. 
Under generic conditions, it has been shown that a projective collineation 
(PC) is the most general vector field such that the expression in the 
left-hand side of (15) is proportional to the tangent vector of the fiducial 
geodesic, whatever be the choice of the geodesic (Caviglia et al., 1982a). 
Recalling that a PC is characterized by the condition 

V~( VaKb + vbK,,) = (2g,,bV~Vd Kd + g,,~VbVd Kd + gb~VaVdKd)/(n + I) 

(16) 

equation (15) may be rewritten as 

( 8~VcX7dK a + 8~VbVaKd)~I O~ 1 C/(n + 1) = / / a r t ( , )  (17) 

from which it follows that we may put 

r ( , )  = + l )  (18) 

Since equation (18) may always be solved for r, substituting into equation 
(13) and comparing with equation (5) we obtain the expression of the 
dynamical symmetry associated with K a. To summarize, we have found a 
new characterization of PCs as generators of dynamical symmetries. 

Suppose now that we are looking for point symmetries: according to 
the definition, r is not allowed to depend on //. Then, on account of 
equation (4), equation (18) yields 

Or Or 2VdK a 
as + ~/a aq Q n + 1 (19) 

In view of the fact that the fight-hand side of equation (19) is independent 
of//, it follows that r = "r(s). Substituting again into equation (19) we obtain 
the compatibility condition 

dr 2XTaK a 
-~- = const = - -  (20) 

n + l  

Since equation (20) shows that the PC K a reduces to an affine collineation 
(AC) (Katzin et al., 1972), it follows that point symmetries are generated by 
ACs. 

To conclude this section we shall examine two particular cases. Firstly, 
let us assume that the AC K Q degenerates into a Killing vector: this means 
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that the condition 

xTaK b + X7bK,, = 0 (21) 

holds identically, so that it follows from equation (18) that F(~')=0. 
Accordingly, the Killing vector K a identifies the point symmetry 

y = K a  0_0_ i l bOK a 0 
Oq ,7 + (22) Oq b Oil a 

It may be verified by direct calculation that E r0 = 0. Using the well-known 
result that dErO = ErdO, we may conclude that the Killing vector K a 
identifies a Noether symmetry. 

Secondly, let us consider the null vector field on M. In view of the 
previous discussion it gives rise to the dynamical symmetry 

0 
r =  o-S (23) 

that will be used in the following sections in order to generate conserved 
quantities. 

4. DYNAMICAL SYMMETRIES CONCOMITANT WITH 
TENSOR FIELDS OF THE CONFIGURATION SPACE 

In this section we look for dynamical symmetries of F such that K a is a 
polynomial function of//given by 

K a K a baz. 
a 2 " " a P  TM �9 ~ q a p  

(24) 

where g a a is a totally symmetric tensor field defined on M and, of 
�9 I ' - "  p 

course, radices are raised by using the contravariant metric tensor gab. 
Suppose that a field Y of the form (5) with K a given by equation (24) is 

a dynamical symmetry: substituting equation (24) into equation (7) it 
follows that ,r satisfies the relation 

qO ) 
a 2 " " " a p - i  

-(p-l r "r  o _ 0or( ) (25) 1 b c  d a 3 . . . a p t l L ' l  t t  " " " (1  a p  

Using the same procedure of the previous section, let us substitute equations 
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(24), (25), and (12) into equation (8). After long and cumbersome calcula- 
tions it may be shown that equation (8) is equivalent to equation (15), where 
K a is now given by equation (24). Using recent results of Caviglia et al. 
(1982a, b) it may be proved that equation (15) is satisfied by a vector K" of 
the form (24) along every integral curve of F if and only if there exists a 
totally symmetric tensor field k~,...,, such that the following relation holds 
identically: 

[ (p  + 2)VIhV~Ka, .... ~,-2V,~v, bKa,...~p)]/p=gao, k~,...~,) (26) 

and FF(r )  is given by 

rr( ) = < , . . . o y , . . .  qo,. (27) 

Recalling that (Caviglia et al., 1982a) a totally symmetric tensor field 
K~ ~ satisfying equation (26) is usually referred to as a generalized Killing 

I " "  p 

tensor (GKT), we may conclude that every dynamical symmetry Y for 
which equation (24) holds is related to a GKT. It follows easily that the 
converse of the last statement also holds, provided one defines K" and ~" 
through equations (24) and (25), respectively, while r is to be determined by 
solving equation (27). 

To complete the discussion, we notice that equation (27) is satisfied by 
a vanishing function r if k~,...~ = 0, i.e., iff 

xT~V~bK,,, ...%)= 0 (28) 

In particular, equation (28) holds for a Killing tensor of order p, which is 
defined as a totally symmetric tensor of order p satisfying the relation 

v~bKa,...ap) = 0 (29) 

Killing tensors have long been known as generators of first integrals of 
geodesic motion; we will show in the following sections how this property 
also extends to generic GKTs. 

5. CONSERVED QUANTITIES ASSOCIATED WITH 
DYNAMICAL SYMMETRIES BY 

DEFORMATION PROCESSES 

In this section we study the connections between the previously de- 
scribed classes of dynamical symmetries and constants of the motion. We 
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begin by recalling a very simple result, which follows directly from the 
definition (29) of KT. 

Lemma, If K~,...~p is a KT then the quantity 

= Ko ~ q r ' - - - q ~  (30) 
�9 , p 

is conserved. In particular, the Lagrangian L is a conserved quan- 
tity. 

A remarkable class of first integrals will now be obtained by a process 
of deformation of the conserved quantities described in the lemma. To this 
aim, we notice that to every dynamical symmetry Y and to every conserved 
quantity q~ we may associate another first integral given by 

Y(~) = const (31) 

along the trajectories of the system. To prove this it suffices to recall that 
the definition (6) and equation (9) imply 

r r ( h ) -  r r ( h )  = - r ( T ) r ( h )  (32) 

for every function h. Then equation (31) follows from equation (32) under 
the assumption that h is a first integral of motion, i.e., F(h) = 0. 

As a consequence of the lemma and of equation (31) we shall prove the 
following corollary. 

Corollary. Consider a dynamical symmetry generated by a PC K ~ 
and a Killing tensor K~,...~p. Then the quantity 

[Et<K,,,...,, -2pv,,K"K,, ~ /(n+l)]o~'...?1% (33) 
p I " p 

is a first integral of motion. 

Proof. Substitute the expression (30) of ~ into equation (31) and 
suppose that Y has the form (5) with ~/~ given by equation (13). Then we 
have 

Y(q~) --- [K~( OK,,...%/Oq~)+ P( OKb/Oq"' )Kb~v..% 

- pr(r)K~,. . .%]//~'- .- / /~,  (34) 

Equation (33) follows easily, recalling the definition of the Lie derivative 
and comparing equation (34) with equation (18). �9 
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Some comments are in order now. First of all, the conserved quantity 
(33) does not depend on the explicit determination of the component r of Y. 
Then it may be written down immediately, provided one knows the PC and 
the KT. 

Secondly, under the further assumption that the given KT coincides 
with the metric tensor, the first integral (33) can be written in the equivalent 
form 

�89 [ V, Kh + VhK,  - -4vcKCg,b/ (n  + 1)]//'//b (35) 

showing the existence of a second-order Killing tensor canonically associ- 
ated to every PC. 

Thirdly, the content of the corollary is already known in the literature 
as the related integral theorem (Katzin et al., 1968, 1973, 1974), which has 
also been used to derive the conservation of the Runge-Lenz vector in the 
Kepler problem. 

We shall now prove a similar result under the assumption that the 
dynamical symmetry is generated by a GKT. This procedure will give an 
extension of the related integral theorem. 

Theorem 1. Suppose that Hb,...b, is a KT and that K~,...% is a 
GKT. Then the quantity 

( mVb,Ki,,2...%Hibv..b., + Kiav..%ViHb,...b,,) q. ' u ' ' "  Cl ~Pil h , . . .  ?1 ~" 

(36) 

is conserved. 

Proof. Consider equation (31), where q~ is substituted by Hb,...b.//h,... 
//hm. Assume that K a and ~ are given by equations (24) and (25), respec- 
tively. In view of the identity 

V K ~ . h , . a 2  % [(OK',~ . /Oqh,)  h, ~2""%q q ""el  =t~ "'" ~ " 

- ( p - 1 )  

p a / ( "  r lab ,aa ,  �9 
~--'-bl c*x  a2...apJ,,t '-.1 . . . .  qap  
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we deduce that the conserved quantity (31) may be written as 

= [ ,% ,.:q~ 

a 2 " " a  p X b l a  a 2 �9 . . a p ]  

X it a 2 " ' "  i t%q  h ' ' ' '  q b , _  m F ( r ) H h , . . . b ? i b , . . ,  itbm 

Comparing with the definition of V ,  H b . . . b ,  ' we conclude that the quantity 
(36) yields a first integral of motion�9 �9 

To comment on the meaning of the theorem we make the following 
remarks�9 Firstly, the conserved quantity (36) depends on the scalar F( r )  
which can be evaluated by integration of equation (27). Therefore, the 
computation of the first integral (36) is not straightforward, since it involves 
the search for the solution of a partial differential equation�9 

Secondly, if the given KT coincides with the metric tensor g~h then the 
first integral (36) assumes the form 

�9 b, �9 h. , / /~,  2F( 2 v h , K h , a 2 . . . o f l  q . . . .  ;7 ~, -- "r)gabqaO b (37) 

In particular, when we consider null geodesics for which g,,bO"il h =  0 
identically, the conserved quantity (37) reduces to a polynomial of order 
p + 1 showing that xT, h K h ,, ~ , is a conformal Killing tensor. 

s t I 2 2" ' "  p "  

Thirdly, let us suppose that the tensor field Ku,...o, is a KT. Comparing 
equations (26) and (27) with the definition (29) of KT, it follows that F( r )  
can be set equal to zero�9 Moreover, equation (29) yields the identity 

( V i K b : 2 . . . ~ p +  PVb~ i~2...,,p)q q . . . .  ;7"" = 0 (38) 

In view of equation (38) the conserved quantity (36) may be written as 

(i/p)( r'  P a u . . a p ~ i H b l . . . b m  - mH~b2. . .b .  XTiKbla2.. .%) 

x//"- '--,  z/",,//<...//h~ (39) 

showing that the first integral (36) is generated by the Schouten-Nijenhuis 
bracket of the given Killing tensors, up to a constant factor (Sommers, 
1973). Using the terminology of analytical mechanics we may say that the 
conserved quantity (39) is equivalent to the Poisson bracket of the first 
integrals K~, . . . ,pO" '  " " a. up and Hh,. . .h. , i  1 h, . . . ;7 I,,,, (Katzin et al., 1968). 
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6. D Y N A M I C A L  S Y M M E T R I E S  A N D  N O E T H E R - T Y P E  
C O N S E R V E D  QUANTITIES 

In this section we examine a different class of first integrals which are 
also interesting insofar as they give a further contribution to the analysis of 
the relations between conserved quantities and dynamical symmetries. Our 
approach is based on a recent result by Lutzky (1979a) stating that a vector 
field, and in particular a dynamical symmetry Y, gives rise to a Noether-type 
conserved quantity of the form 

= ( r~l" - K ~ )( O L / O ~ I  ~ ) - r L  + f (40) 

if and only if the function f satisfies the equation 

Y ( L ) +  F ( r ) L  = r ( f )  (41) 

Lutzky argues that it is not useful to allow f to depend on//, for, if it did, we 
could always associate any conserved quantity with any arbitrary transfor- 
mation. However, our conditions are not so general as in Lutzky's work. For 
instance, the field Y is a dynamical symmetry constructed by a well-defined 
procedure; moreover, we only aim at writing down the explicit expression of 
at least one first integral associated with Y. Accordingly, we allow f to 
depend on s, q, and//, showing that under these conditions equation (41) 
can be solved for f.  Namely, we have the following theorem. 

T h e o r e m  2. (a) To every PC K ~ corresponds,a Noether-type con- 
served quantity of the form 

(b) To every GKT K~,...~, 
quantity of the form 

4yoKe 

(42) 

corresponds a Noether-type conserved 

qJ = rg~hil~?t b - K~,  ...,pil ~' " . .  71% + s [ v ~ K ~ ,  . . . .  ?1~?t ~' . . .  7t % 

- F ( r ) g ,  bit"tt h] (43) 

Proof.  (a) Consider the dynamical symmetry (5) associated with the PC 
K ", such that F ( r ) =  2~7 , .KC/ (n  + 1) and r/~ is given by equation (13). In 
order to determine f from equation (41) we recall that Y(L) is the conserved 
quantity (35). It is also to be remarked that F(L) vanishes identically, so 
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that F ( r  = F(~'L). It follows from the above observations that f may be 
written as 

1 �9 ̀*. b 1 ( 4VcK C ]//,,Oh 
f = -~*g`*bq q + ~s v`*K b + VbK`* n-~l  g`*b] (44) 

Substituting equation (44) into equation (40) and recalling the expressions 
of L and ~`*, we conclude that the conserved quantity (40) assumes the form 
(42). 

(b) The proof is omitted since it is very similar to the proof of part (a). 

Referring to the conserved quantities (42) and (43), we do want to 
point out that the existence of these first integrals cannot be proved in a 
purely relativistic context, where, at most, one can find conserved quantities 
concomitant with a G K T  under very restrictive ad hoc conditions (Caviglia 
et al., 1982a). The point is that one needs the concept of extended tangent 
space in order to introduce the function ~- which appears both in (42) and in 
(43). Actually, assuming that the function r has been determined, we may 
recall the discussion of the previous section to conclude that every G K T  
always gives rise to at least two first integrals of motion. 

An inspection of equations (42) and (43) reveals that they depend 
explicitly on s, so that the knowledge of a further family of 2 n - 1  
functionally independent first integrals of the form f(q,//) = const is suffi- 
cient to determine the geodesics of the given metric. 

In general, the dynamical symmetry (23), say, Y = O/Os, when acting 
on a first integral of motion gives rise to another first integral. By applying 
this already known result (Katzin et al., 1977) it may be proved that the 
conserved quantities (42) and (43) identify the first integrals (35) and (37), 
respectively, thus showing the consistency of our analysis. 

Suppose now that K`* is a Killing vector and that K`* *̀ is a KT Let 
�9 . . I " "  p . 

us choose ~- = 0, consistently with equations (18) and (27). Then the quanti- 
ties (42) and (43) reduce to the well-known conserved quantities naturally 
associated with Killing vectors and KTs. No further information is gained if 
one allows ~-= const in the case of the Killing vector or ~" = as + fi in the 
case of the KT, as can be easily seen by substitution into equations (42) and 
(43), respectively. 

7. DISCUSSION 

In this work we have described a procedure aiming at the generation of 
dynamical symmetries of the Euler-Lagrange equations deduced from a 
regular Lagrangian L = �89 h. We have considered only dynamical sym- 
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metries such that their natural projection onto the configuration manifold 
M yields a vector field K ~ of M or is generated by a totally symmetric 
tensor field K~ ~, in the sense that it may be written as K ~  ~//a2...//a,. 

I ' ' "  p 2 " ' '  p 

The fundamental motivation for this choice has come from recently estab- 
lished results in the field of general relativity, where it has been shown that 
geometric objects of the forms described above may play the role of 
generators of first integrals of geodesic motion. Then we have proved that 
the class of tensor fields associated with dynamical symmetries coincides 
with the family of generalized Killing tensors. A geometric interpretation of 
generalized Kilting tensors as generators of infinitesimal variations of arbi- 
trary geodesics has been given elsewhere (Caviglia et al., 1982a, b). 

Subsequently we have explored the possibility of generating new first 
integrals of motion through the deformation of a given one via a dynamical 
symmetry. This technique has led to a proper extension of a class of 
conserved quantities that were already known in general relativity. However, 
the most striking result consists in the determination of Noether-type 
conserved quantities whose explicit form can be specified from a knowledge 
of the dynamical symmetry, without any further integration being required. 

It seems that, besides clarifying a few technical problems concerning 
the relations between dynamical symmetries and Noether-type conserved 
quantities, our approach shows the advantage of looking at the methods 
worked out in general relativity from a more abstract viewpoint, in order to 
obtain the maximum possible amount of information. Conversely, it also 
suggests efficient procedures for the determination of dynamical symmetries 
and of the related conserved quantities in analytical mechanics. 

In this work we have not examined the possibility of computing 
constants of motion by using the formula for the Poisson brackets in 
Lagrangian mechanics (Sarlet et al., 1981), since the results obtained by this 
method are straightforward from a theoretical viewpoint, even though they 
may turn out to be useful in practical applications. Similarly, we have not 
analyzed the possibility of generating first integrals by repeated application 
of the deformation technique described in Section 5. To give a little feeling 
of possible results, let us consider two PCs, say, K ~ and H ~, and denote by 
Y and Z, respectively, the associated dynamical symmetries. Then it follows 
that the quantity ZY(L) is conserved and is given by 

Z y ( L ) = [ I (  4v,.K" ) 
~En XY~Kb + XTbK~ g~b n + l  

4Vc K" ]]/ff//h -2XTcHC v~Kh + VbK" n-~l g~b]] 
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In particular, the tensor field enclosed in square brackets is a second-order 
Killing tensor. 

Finally, a comment concerning the lack of specific examples is in order. 
As a matter of fact, it should be observed that in the existing literature on 
the connections between symmetry properties and conserved quantities one 
can easily find several applications that may be regarded as special cases 
illustrating the procedures described in this paper. They have not been 
reported here, owing to the fact that they can be easily found in the 
"relativistic" papers referred to at the end of this section. More involved 
applications concerning Noether-type conserved quantities are still under 
investigation. 
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